3.139 \(\int \frac{\tanh ^4(c+d x)}{a+b \text{sech}^2(c+d x)} \, dx\)

Optimal. Leaf size=59 \[ -\frac{(a+b)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{b} \tanh (c+d x)}{\sqrt{a+b}}\right )}{a b^{3/2} d}+\frac{x}{a}+\frac{\tanh (c+d x)}{b d} \]

[Out]

x/a - ((a + b)^(3/2)*ArcTanh[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a + b]])/(a*b^(3/2)*d) + Tanh[c + d*x]/(b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.178189, antiderivative size = 59, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {4141, 1975, 479, 522, 206, 208} \[ -\frac{(a+b)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{b} \tanh (c+d x)}{\sqrt{a+b}}\right )}{a b^{3/2} d}+\frac{x}{a}+\frac{\tanh (c+d x)}{b d} \]

Antiderivative was successfully verified.

[In]

Int[Tanh[c + d*x]^4/(a + b*Sech[c + d*x]^2),x]

[Out]

x/a - ((a + b)^(3/2)*ArcTanh[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a + b]])/(a*b^(3/2)*d) + Tanh[c + d*x]/(b*d)

Rule 4141

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[((d*ff*x)^m*(a + b*(1 + ff^2*x^2)^(n/2))^p)/(1 + ff^
2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && IntegerQ[n/2] && (IntegerQ[m/2] ||
EqQ[n, 2])

Rule 1975

Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*ExpandToSum[u, x]^p*ExpandToSum[v, x]^q
, x] /; FreeQ[{e, m, p, q}, x] && BinomialQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0]
&&  !BinomialMatchQ[{u, v}, x]

Rule 479

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e^(2*n
- 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*d*(m + n*(p + q) + 1)), x] - Dist[e^(2*n)
/(b*d*(m + n*(p + q) + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1) + (a*d*(m +
 n*(q - 1) + 1) + b*c*(m + n*(p - 1) + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d
, 0] && IGtQ[n, 0] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 522

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(b*e - a*f
)/(b*c - a*d), Int[1/(a + b*x^n), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a
, b, c, d, e, f, n}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\tanh ^4(c+d x)}{a+b \text{sech}^2(c+d x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x^4}{\left (1-x^2\right ) \left (a+b \left (1-x^2\right )\right )} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac{\operatorname{Subst}\left (\int \frac{x^4}{\left (1-x^2\right ) \left (a+b-b x^2\right )} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac{\tanh (c+d x)}{b d}-\frac{\operatorname{Subst}\left (\int \frac{a+b+(-a-2 b) x^2}{\left (1-x^2\right ) \left (a+b-b x^2\right )} \, dx,x,\tanh (c+d x)\right )}{b d}\\ &=\frac{\tanh (c+d x)}{b d}+\frac{\operatorname{Subst}\left (\int \frac{1}{1-x^2} \, dx,x,\tanh (c+d x)\right )}{a d}-\frac{(a+b)^2 \operatorname{Subst}\left (\int \frac{1}{a+b-b x^2} \, dx,x,\tanh (c+d x)\right )}{a b d}\\ &=\frac{x}{a}-\frac{(a+b)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{b} \tanh (c+d x)}{\sqrt{a+b}}\right )}{a b^{3/2} d}+\frac{\tanh (c+d x)}{b d}\\ \end{align*}

Mathematica [B]  time = 1.10741, size = 196, normalized size = 3.32 \[ \frac{\text{sech}^2(c+d x) (a \cosh (2 (c+d x))+a+2 b) \left (\sqrt{a+b} \sqrt{b (\cosh (c)-\sinh (c))^4} (a \text{sech}(c) \sinh (d x) \text{sech}(c+d x)+b d x)+(a+b)^2 (\sinh (2 c)-\cosh (2 c)) \tanh ^{-1}\left (\frac{(\cosh (2 c)-\sinh (2 c)) \text{sech}(d x) ((a+2 b) \sinh (d x)-a \sinh (2 c+d x))}{2 \sqrt{a+b} \sqrt{b (\cosh (c)-\sinh (c))^4}}\right )\right )}{2 a b d \sqrt{a+b} \sqrt{b (\cosh (c)-\sinh (c))^4} \left (a+b \text{sech}^2(c+d x)\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[Tanh[c + d*x]^4/(a + b*Sech[c + d*x]^2),x]

[Out]

((a + 2*b + a*Cosh[2*(c + d*x)])*Sech[c + d*x]^2*((a + b)^2*ArcTanh[(Sech[d*x]*(Cosh[2*c] - Sinh[2*c])*((a + 2
*b)*Sinh[d*x] - a*Sinh[2*c + d*x]))/(2*Sqrt[a + b]*Sqrt[b*(Cosh[c] - Sinh[c])^4])]*(-Cosh[2*c] + Sinh[2*c]) +
Sqrt[a + b]*Sqrt[b*(Cosh[c] - Sinh[c])^4]*(b*d*x + a*Sech[c]*Sech[c + d*x]*Sinh[d*x])))/(2*a*b*Sqrt[a + b]*d*(
a + b*Sech[c + d*x]^2)*Sqrt[b*(Cosh[c] - Sinh[c])^4])

________________________________________________________________________________________

Maple [B]  time = 0.067, size = 386, normalized size = 6.5 \begin{align*}{\frac{1}{da}\ln \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }-{\frac{a}{2\,d}\ln \left ( \sqrt{a+b} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}+2\,\tanh \left ( 1/2\,dx+c/2 \right ) \sqrt{b}+\sqrt{a+b} \right ){b}^{-{\frac{3}{2}}}{\frac{1}{\sqrt{a+b}}}}-{\frac{1}{d}\ln \left ( \sqrt{a+b} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}+2\,\tanh \left ( 1/2\,dx+c/2 \right ) \sqrt{b}+\sqrt{a+b} \right ){\frac{1}{\sqrt{b}}}{\frac{1}{\sqrt{a+b}}}}-{\frac{1}{2\,da}\sqrt{b}\ln \left ( \sqrt{a+b} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}+2\,\tanh \left ( 1/2\,dx+c/2 \right ) \sqrt{b}+\sqrt{a+b} \right ){\frac{1}{\sqrt{a+b}}}}+{\frac{a}{2\,d}\ln \left ( \sqrt{a+b} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}-2\,\tanh \left ( 1/2\,dx+c/2 \right ) \sqrt{b}+\sqrt{a+b} \right ){b}^{-{\frac{3}{2}}}{\frac{1}{\sqrt{a+b}}}}+{\frac{1}{d}\ln \left ( \sqrt{a+b} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}-2\,\tanh \left ( 1/2\,dx+c/2 \right ) \sqrt{b}+\sqrt{a+b} \right ){\frac{1}{\sqrt{b}}}{\frac{1}{\sqrt{a+b}}}}+{\frac{1}{2\,da}\sqrt{b}\ln \left ( \sqrt{a+b} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}-2\,\tanh \left ( 1/2\,dx+c/2 \right ) \sqrt{b}+\sqrt{a+b} \right ){\frac{1}{\sqrt{a+b}}}}-{\frac{1}{da}\ln \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) }+2\,{\frac{\tanh \left ( 1/2\,dx+c/2 \right ) }{bd \left ( \left ( \tanh \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1 \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(d*x+c)^4/(a+b*sech(d*x+c)^2),x)

[Out]

1/d/a*ln(tanh(1/2*d*x+1/2*c)+1)-1/2/d*a/b^(3/2)/(a+b)^(1/2)*ln((a+b)^(1/2)*tanh(1/2*d*x+1/2*c)^2+2*tanh(1/2*d*
x+1/2*c)*b^(1/2)+(a+b)^(1/2))-1/d/b^(1/2)/(a+b)^(1/2)*ln((a+b)^(1/2)*tanh(1/2*d*x+1/2*c)^2+2*tanh(1/2*d*x+1/2*
c)*b^(1/2)+(a+b)^(1/2))-1/2/d*b^(1/2)/a/(a+b)^(1/2)*ln((a+b)^(1/2)*tanh(1/2*d*x+1/2*c)^2+2*tanh(1/2*d*x+1/2*c)
*b^(1/2)+(a+b)^(1/2))+1/2/d*a/b^(3/2)/(a+b)^(1/2)*ln((a+b)^(1/2)*tanh(1/2*d*x+1/2*c)^2-2*tanh(1/2*d*x+1/2*c)*b
^(1/2)+(a+b)^(1/2))+1/d/b^(1/2)/(a+b)^(1/2)*ln((a+b)^(1/2)*tanh(1/2*d*x+1/2*c)^2-2*tanh(1/2*d*x+1/2*c)*b^(1/2)
+(a+b)^(1/2))+1/2/d*b^(1/2)/a/(a+b)^(1/2)*ln((a+b)^(1/2)*tanh(1/2*d*x+1/2*c)^2-2*tanh(1/2*d*x+1/2*c)*b^(1/2)+(
a+b)^(1/2))-1/d/a*ln(tanh(1/2*d*x+1/2*c)-1)+2/d/b*tanh(1/2*d*x+1/2*c)/(tanh(1/2*d*x+1/2*c)^2+1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(d*x+c)^4/(a+b*sech(d*x+c)^2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.3162, size = 1854, normalized size = 31.42 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(d*x+c)^4/(a+b*sech(d*x+c)^2),x, algorithm="fricas")

[Out]

[1/2*(2*b*d*x*cosh(d*x + c)^2 + 4*b*d*x*cosh(d*x + c)*sinh(d*x + c) + 2*b*d*x*sinh(d*x + c)^2 + 2*b*d*x + ((a
+ b)*cosh(d*x + c)^2 + 2*(a + b)*cosh(d*x + c)*sinh(d*x + c) + (a + b)*sinh(d*x + c)^2 + a + b)*sqrt((a + b)/b
)*log((a^2*cosh(d*x + c)^4 + 4*a^2*cosh(d*x + c)*sinh(d*x + c)^3 + a^2*sinh(d*x + c)^4 + 2*(a^2 + 2*a*b)*cosh(
d*x + c)^2 + 2*(3*a^2*cosh(d*x + c)^2 + a^2 + 2*a*b)*sinh(d*x + c)^2 + a^2 + 8*a*b + 8*b^2 + 4*(a^2*cosh(d*x +
 c)^3 + (a^2 + 2*a*b)*cosh(d*x + c))*sinh(d*x + c) + 4*(a*b*cosh(d*x + c)^2 + 2*a*b*cosh(d*x + c)*sinh(d*x + c
) + a*b*sinh(d*x + c)^2 + a*b + 2*b^2)*sqrt((a + b)/b))/(a*cosh(d*x + c)^4 + 4*a*cosh(d*x + c)*sinh(d*x + c)^3
 + a*sinh(d*x + c)^4 + 2*(a + 2*b)*cosh(d*x + c)^2 + 2*(3*a*cosh(d*x + c)^2 + a + 2*b)*sinh(d*x + c)^2 + 4*(a*
cosh(d*x + c)^3 + (a + 2*b)*cosh(d*x + c))*sinh(d*x + c) + a)) - 4*a)/(a*b*d*cosh(d*x + c)^2 + 2*a*b*d*cosh(d*
x + c)*sinh(d*x + c) + a*b*d*sinh(d*x + c)^2 + a*b*d), (b*d*x*cosh(d*x + c)^2 + 2*b*d*x*cosh(d*x + c)*sinh(d*x
 + c) + b*d*x*sinh(d*x + c)^2 + b*d*x - ((a + b)*cosh(d*x + c)^2 + 2*(a + b)*cosh(d*x + c)*sinh(d*x + c) + (a
+ b)*sinh(d*x + c)^2 + a + b)*sqrt(-(a + b)/b)*arctan(1/2*(a*cosh(d*x + c)^2 + 2*a*cosh(d*x + c)*sinh(d*x + c)
 + a*sinh(d*x + c)^2 + a + 2*b)*sqrt(-(a + b)/b)/(a + b)) - 2*a)/(a*b*d*cosh(d*x + c)^2 + 2*a*b*d*cosh(d*x + c
)*sinh(d*x + c) + a*b*d*sinh(d*x + c)^2 + a*b*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tanh ^{4}{\left (c + d x \right )}}{a + b \operatorname{sech}^{2}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(d*x+c)**4/(a+b*sech(d*x+c)**2),x)

[Out]

Integral(tanh(c + d*x)**4/(a + b*sech(c + d*x)**2), x)

________________________________________________________________________________________

Giac [B]  time = 1.91454, size = 147, normalized size = 2.49 \begin{align*} \frac{\frac{d x}{a} - \frac{{\left (a^{2} e^{\left (2 \, c\right )} + 2 \, a b e^{\left (2 \, c\right )} + b^{2} e^{\left (2 \, c\right )}\right )} \arctan \left (\frac{a e^{\left (2 \, d x + 2 \, c\right )} + a + 2 \, b}{2 \, \sqrt{-a b - b^{2}}}\right ) e^{\left (-2 \, c\right )}}{\sqrt{-a b - b^{2}} a b} - \frac{2}{b{\left (e^{\left (2 \, d x + 2 \, c\right )} + 1\right )}}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(d*x+c)^4/(a+b*sech(d*x+c)^2),x, algorithm="giac")

[Out]

(d*x/a - (a^2*e^(2*c) + 2*a*b*e^(2*c) + b^2*e^(2*c))*arctan(1/2*(a*e^(2*d*x + 2*c) + a + 2*b)/sqrt(-a*b - b^2)
)*e^(-2*c)/(sqrt(-a*b - b^2)*a*b) - 2/(b*(e^(2*d*x + 2*c) + 1)))/d